Some properties for the critical random series-parallel graph

Xinxing Chen (Shanghai Jiaotong University)

joint work with Bernard Derrida, Thomas Duquesne and Zhan Shi

18th Workshop on Markov Processes and Related Topics

$$
\text { July 31, } 2023
$$

Outline of the talk

- Recursive tree processes and recursive distributional equations
- Derrida-Retaux recursive system
- Random series-parallel graphes
- Resistances in the critical series-parallel graph
- Distances in the slightly supercritical series-parallel graph

Recursive tree processes and recursive distributional equations

Let \mathbb{T} be an inverted rooted tree. Given $\xi(v), v \in \mathbb{T}$, and $X(u), u \in \mathbb{T}_{0}$.
Aldous and Bandyopadhyay (2005)introduced

$$
X(v)=g\left(\xi, X\left(v_{1}\right), X\left(v_{2}\right), \cdots\right), \quad v \in \mathbb{T} / \mathbb{T}_{0}
$$

and called it the recursive tree process. We consider a max-type function g.

- Height of Galton-Watson tree: $X(v)=1+\max \left\{X\left(v_{i}\right): i \leq \xi(v)\right\}$
- Range of Branching Random Walk (Biggins 1998):

$$
X(v)=\max _{i}\left\{\left(X\left(v_{i}\right)+\xi\left(v_{i}\right)\right)^{+}\right\}
$$

- Discounted BRW (Athreya 1985): $X(v)=\xi(v)+c \max _{i}\left\{X\left(v_{i}\right)\right\}$.
- Recursive distributional equation: $X_{n+1} \stackrel{d}{=} g\left(\xi, X_{n}^{(1)}, X_{n}^{(2)}, \cdots\right), \quad n \geq 0$.

Derrida-Retaux recursive system

Given X_{0}^{*}. Let $\xi_{0} \sim B(1, p)$ and set $X_{0}=\xi_{0} X_{0}^{*}$. Recursively define

$$
X_{n+1}=\max \left\{X_{n}^{(1)}+X_{n}^{(2)}-1,0\right\}, \quad n \geq 0
$$

where $X_{n}^{(1)}, X_{n}^{(2)}$ are independent copies of X_{n}.

- Free energy: $\mathcal{F}_{\infty}:=\lim _{n \rightarrow \infty} \downarrow \frac{\mathbf{E}\left(X_{n}\right)}{2^{n}}$.

Theorem (Collet-Eckmann-Glaser-Martin 1984): \exists Critical value p_{c},

$$
\mathcal{F}_{\infty}(p)=0, \quad p \leq p_{c} \quad \text { and } \quad \mathcal{F}_{\infty}(p)>0, \quad p>p_{c}
$$

- Indeed, p_{c} is the solution which satisfies $\mathbf{E}_{p}\left(2^{X_{0}}\right)-\mathbf{E}_{p}\left(X_{0} 2^{X_{0}}\right)=0$.

Conjecture (Derrida-Retaux 2014) : $\mathcal{F}_{\infty}(p)=\exp \left\{-\frac{K+o(1)}{\left(p-p_{c}\right)^{1 / 2}}\right\}, \quad p \rightarrow p_{c}^{+}$.

Derrida-Retaux recursive system

Theorem 1 (C-Dagard-Derrida-Hu-Lifshits-Shi, 2021) As $p \rightarrow p_{c}^{+}$,

$$
\lim _{n \rightarrow \infty} \frac{\mathbf{E}\left(X_{n}\right)}{2^{n}}=\exp \left\{-\frac{1}{\left(p-p_{c}\right)^{1 / 2+o(1)}}\right\}
$$

Theorem 2 (C-Hu-Shi, 2022): When $p=p_{c}$,

$$
\mathbf{P}\left(X_{n} \neq 0\right)=\frac{1}{n^{2+o(1)}}, \quad \mathbf{E}\left(X_{n}\right)=\frac{1}{n^{2+o(1)}}, \quad n \rightarrow \infty
$$

Theorem 3 (C-Hu-Shi, 2023+): As $p \rightarrow p_{c}^{-}$,
$-\left(p-p_{c}\right)^{\frac{1}{2}+o(1)} \leq \liminf _{n \rightarrow \infty} \frac{\log \left(\mathbf{E}\left(X_{n}\right)\right)}{n} \leq \limsup _{n \rightarrow \infty} \frac{\log \left(\mathbf{E}\left(X_{n}\right)\right)}{n} \leq-\left(p-p_{c}\right)^{\frac{1}{2}}$.
Question: Does $\lim _{n \rightarrow \infty} \frac{\log \left(\mathbf{E}\left(X_{n}\right)\right)}{n}$ exists?

Derrida-Retaux recursive system

Figure: $\delta_{n}:=\mathbf{E}_{p}\left(X_{n} 2^{X_{n}}\right)-\mathbf{E}_{p}\left(2^{X_{n}}\right)$, where $X_{0}=2 \xi_{0}$ with $\xi_{0} \sim B(1, p)$.

If the initial distribution does not exactly lie on the critical manifold, but only in a neighbourhood, with distance $\epsilon:=\left|\delta_{0}\right|$, then for a long time, of order $\epsilon^{-1 / 2}$, the system lies in the ϵ-neighbourhood of the critical manifold before drifting away definitely.

Random series-parallel graph

Recursively define a sequence of random series-parallel graphs G_{n}.

- G_{0} : a graph with two vertices a and z connected by a single edge;
- To construct G_{n+1} from G_{n} :
replace each edge of G_{n}
by $\longmapsto \longrightarrow$ with prob. $p \in[0,1]$,
or by
 with prob. $1-p$.

Hambly and Jordan (2004): resistance, distance, Cheeger constants

Resistances in the critical series-parallel graph

Assume that each edge of G_{n} has resistance 1 , and write R_{n} for the resistance of a and z in G_{n}. As Fig, $R_{0}=1, R_{1}=2, R_{2}=\frac{5}{2}$.

$$
R_{n+1} \stackrel{\text { law }}{=} \begin{cases}R_{n}^{(1)}+R_{n}^{(2)}, & \text { with prob. } p, \\ \frac{1}{\frac{1}{R_{n}^{(1)}}+\frac{1}{R_{n}^{(2)}},} \quad \text { with prob. } 1-p,\end{cases}
$$

where $R_{n}^{(1)}$ and $R_{n}^{(2)}$ are independent and have the same law as R_{n}.

- $\mathbf{P}_{p}\left(R_{n} \in \cdot\right)=\mathbf{P}_{1-p}\left(\frac{1}{R_{n}} \in \cdot\right), \forall p$

Resistances in the critical series-parallel graph

Hambly and Jordan (2004): Phase transition for R_{n} at $p=p_{c}:=\frac{1}{2}$,

$$
\lim _{n} R_{n}=0 \text { a.s. if } p<p_{c}, \quad \text { and } \lim _{n} R_{n}=\infty \text { a.s. if } p>p_{c} .
$$

- If $p<\frac{1}{2}$ then $\exists \alpha, c \in(0,1), \forall n, \mathbf{E}\left(R_{n}^{\alpha}\right)<c \mathbf{E}\left(R_{n-1}^{\alpha}\right)$
- $\mathbf{P}_{p}\left(R_{n} \in \cdot\right)=\mathbf{P}_{1-p}\left(\frac{1}{R_{n}} \in \cdot\right), \forall p$

Conjecture (Hambly and Jordan 2004): Under $\mathbf{P}_{p_{c}}$,

$$
R_{n} \xrightarrow{w} \frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{\infty} .
$$

Conjecture (Addario-Berry et al. 2020): $\exists C \in(0, \infty)$, under $\mathbf{P}_{p_{c}}$

$$
\frac{\left|\log R_{n}\right|}{{C n^{1 / 3}}^{w} \text { a beta distribution. } . \text {. }{ }^{\text {. }} \text {. }}
$$

Distances in the slightly supercritical series-parallel graph

Write D_{n} for the graph distance of a and z in G_{n}.
$D_{n+1} \stackrel{\text { law }}{=} \begin{cases}D_{n}^{(1)}+D_{n}^{(2)}, & \text { with prob. } p, \\ \min \left\{D_{n}^{(1)}, D_{n}^{(2)}\right\}, & \text { with prob. } 1-p,\end{cases}$
where $D_{n}^{(i)}$ are i.i.d $\stackrel{d}{\sim} D_{n}$.

Hambly and Jordan (2004): Phase transition at $p_{c}=\frac{1}{2}$,

$$
\lim _{n} D_{n}<\infty \text { a.s. if } p<p_{c}, \quad \text { and } \quad \lim _{n} D_{n}=\infty \text { a.s. if } p>p_{c} .
$$

- Related to a Galton Watson branching process

Auffinger and Cable (2017), notes by Duquesne and by Jian Ding

Distances in the slightly supercritical series-parallel graph

Let $\alpha(p):=\lim _{n} \frac{\log \mathbf{E}\left(D_{n}\right)}{n} \in[0, \infty)$. The limit exists since

$$
D_{n+m} \leq \sum_{i=1}^{D_{n}} \Delta_{i}
$$

where given D_{n}, these Δ_{i} are i.i.d. and have the law of D_{m}.

Theorem. $\lim _{p \rightarrow p_{c}^{+}} \frac{\alpha(p)}{\sqrt{p-p_{c}}}=\frac{\pi}{\sqrt{6}}$.
Heuristics: Let $C:=\frac{\pi^{2}}{6}$. Suppose $f(t, x)$ satisfy $\mathbf{P}\left(D_{n}=k\right)=: \frac{1}{k \sqrt{n}} f\left(n, \frac{\log k}{\sqrt{n}}\right)$,

$$
t \frac{\partial f}{\partial t}=\frac{x}{2} \frac{\partial f}{\partial x}+\frac{f}{2}-C f \frac{\partial f}{\partial x}+\epsilon t\left[-2 f+4 f \int_{0}^{x} f(t, y) d y\right]
$$

