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Recursive tree processes and recursive distributional equations

Let T be an inverted rooted tree. Given ξ(v), v ∈ T, and X(u), u ∈ T0.

Aldous and Bandyopadhyay (2005)introduced

X(v) = g(ξ,X(v1),X(v2), · · · ), v ∈ T/T0,

and called it the recursive tree process. We consider a max-type function g.

Height of Galton-Watson tree: X(v) = 1 + max{X(vi) : i ≤ ξ(v)}
Range of Branching Random Walk (Biggins 1998):

X(v) = max
i
{(X(vi) + ξ(vi))

+}

Discounted BRW (Athreya 1985): X(v) = ξ(v) + c max
i
{X(vi)}.

I Recursive distributional equation: Xn+1
d
= g(ξ,X(1)

n ,X(2)
n , · · · ), n ≥ 0.
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Derrida-Retaux recursive system

Given X∗0 . Let ξ0 ∼ B(1, p) and set X0 = ξ0X∗0 . Recursively define

Xn+1 = max{X(1)
n + X(2)

n − 1, 0}, n ≥ 0,

where X(1)
n ,X(2)

n are independent copies of Xn.

I Free energy: F∞ := lim
n→∞

↓ E(Xn)
2n .

Theorem (Collet-Eckmann-Glaser-Martin 1984): ∃ Critical value pc,

F∞(p) = 0, p ≤ pc and F∞(p) > 0, p > pc.

I Indeed, pc is the solution which satisfies Ep(2X0)− Ep(X02X0) = 0.

Conjecture (Derrida-Retaux 2014) : F∞(p) = exp{− K+o(1)
(p−pc)1/2 }, p→ p+c .
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Derrida-Retaux recursive system

Theorem 1 (C-Dagard-Derrida-Hu-Lifshits-Shi, 2021) As p→ p+c ,

lim
n→∞

E(Xn)

2n = exp{− 1
(p− pc)1/2+o(1) }.

Theorem 2 (C-Hu-Shi, 2022): When p = pc,

P(Xn 6= 0) =
1

n2+o(1) , E(Xn) =
1

n2+o(1) , n→∞.

Theorem 3 (C-Hu-Shi, 2023+): As p→ p−c ,

−(p− pc)
1
2+o(1) ≤ lim inf

n→∞

log(E(Xn))

n
≤ lim sup

n→∞

log(E(Xn))

n
≤ −(p− pc)

1
2 .
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Question: Does lim
n→∞

log(E(Xn))
n exists?



Derrida-Retaux recursive system

If the initial distribution does not exactly lie on the critical manifold, but
only in a neighbourhood, with distance ε := |δ0|, then for a long time, of order
ε−1/2, the system lies in the ε-neighbourhood of the critical manifold before
drifting away definitely.

Xinxing Chen (SJTU) Some properties for the critical random series-parallel graph July 31, 2023 6 / 11

p = 0.20001

p = pc

p = 0.19999

Figure: δn := Ep(Xn2Xn)− Ep(2Xn), where X0 = 2ξ0 with ξ0 ∼ B(1, p).



Random series-parallel graph

Recursively define a sequence of random series-parallel graphs Gn.

G0: a graph with two vertices a and z connected by a single edge;
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To construct Gn+1 from Gn:

replace each edge of Gn

by with prob. p ∈ [0, 1],

or by with prob. 1− p.

Hambly and Jordan (2004): resistance,

distance, Cheeger constants



Assume that each edge of Gn has resistance 1, and write Rn for the resis-

tance of a and z in Gn. As Fig, R0 = 1, R1 = 2, R2 = 5
2 .
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Rn+1
law
=


R(1)

n + R(2)
n , with prob. p,

1
1

R(1)
n

+ 1

R(2)
n

, with prob. 1− p,

where R(1)
n and R(2)

n are independent

and have the same law as Rn.

Resistances in the critical series-parallel graph

I Pp(Rn ∈ ·) = P1−p( 1
Rn
∈ ·), ∀p



Hambly and Jordan (2004): Phase transition for Rn at p = pc := 1
2 ,

lim
n

Rn = 0 a.s. if p < pc, and lim
n

Rn =∞ a.s. if p > pc.

I If p < 1
2 then ∃α, c ∈ (0, 1), ∀n, E(Rαn ) < cE(Rαn−1)

I Pp(Rn ∈ ·) = P1−p( 1
Rn
∈ ·), ∀p

Conjecture (Hambly and Jordan 2004): Under Ppc ,

Rn
w→ 1

2
δ0 +

1
2
δ∞.

Conjecture (Addario-Berry et al. 2020): ∃C ∈ (0,∞), under Ppc

| log Rn|
Cn1/3

w→ a beta distribution.
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Resistances in the critical series-parallel graph



Write Dn for the graph distance of a and z in Gn.

Dn+1
law
=


D(1)

n + D(2)
n , with prob. p,

min{D(1)
n ,D(2)

n }, with prob. 1− p,
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where D(i)
n are i.i.d d∼ Dn.

Hambly and Jordan (2004): Phase transition at pc = 1
2 ,

lim
n

Dn <∞ a.s. if p < pc, and lim
n

Dn =∞ a.s. if p > pc.

I Related to a Galton Watson branching process

Auffinger and Cable (2017), notes by Duquesne and by Jian Ding

Distances in the slightly supercritical series-parallel graph



Let α(p) := lim
n

log E(Dn)
n ∈ [0,∞). The limit exists since

Dn+m ≤
Dn∑
i=1

∆i,

where given Dn, these ∆i are i.i.d. and have the law of Dm.

Theorem. lim
p→p+c

α(p)√
p−pc

= π√
6
.

Heuristics: Let C := π2

6 . Suppose f (t, x) satisfy P(Dn = k) =: 1
k
√

n f (n, log k√
n ),

t
∂f
∂t

=
x
2
∂f
∂x

+
f
2
− Cf

∂f
∂x

+ εt[−2f + 4f
∫ x

0
f (t, y)dy].
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Distances in the slightly supercritical series-parallel graph


